Input files#
Setting file#
Configuration of phonopy calculation can be written in a setting file though it is recommended to use phonopy with Command options.
The setting file contains phonopy configurations whose details are found
at Setting tags. This file is passed to phonopy as the argument of
--conf
option, e.g.,
% phonopy-load --config phonopy.conf [OPTIONS]
where the configuration filename is arbitrary.
phonopy_disp.yaml
#
This is an output file after creating the displacements by -d
option. This
contains the crystal structure information, primitive cell and supercell sizes,
and also the calculator interface. Therefore with this file, users will not need
to specify those crystal structure related tags when running phonopy.
phonopy_disp.yaml
is a default file name that phonopy tries to find in the
current directory. Therefore, phonopy can be used as
% phonopy-load [OPTIONS]
and FORCE_SETS
and BORN
are also searched automatically in the current
directory. FORCE_CONSTANTS
can be read --readfc
option.
Other information such as forces (in FORCE_SETS
), parameters for
non-analytical term correction (in BORN
) can be also stored in
phonopy_*.yaml
like file. If phonopy_params.yaml
contains necessary
information to run expected phonon calculation, it is unnecessary to have
FORCE_SETS
and BORN
in the current directory when phonopy_params.yaml
is
passed as the first argument of phonopy-load
% phonopy-load phonopy_params.yaml [OPTIONS]
can perform the phonon calculation. See more details in phonopy-load command.
Structure file#
Crystal structure is described by a file with specific format for each calculator, though the default crystal structure is written in VASP POSCAR format. See the detail of the calculator interfaces at Interfaces to calculators.
VASP POSCAR like format#
In the following, the VASP POSCAR format that phonopy can parse is explained.
The format is simple. The first line is for your comment, where you can write
anything you want. The second line is the ratio for lattice parameters. You can
multiply by this number. The third to fifth lines give the lattice parameters,
a, b, and c for the respective lines. The sixth line contains the number
of atoms for each atomic species, which have to correspond to the atomic
positions in the order. The seventh line should be written as Direct
. This
means that the atomic positions are represented in fractional (reduced)
coordinates. When you write chemical symbols in the first line, they are read
and those defined by the ATOM_NAME
tag are overwritten.
Example of rutile-type silicon oxide crystal structure (VASP 4 style)#
Si O
1.00000000000000
4.2266540199664249 0.0000000000000000 0.0000000000000000
0.0000000000000000 4.2266540199664249 0.0000000000000000
0.0000000000000000 0.0000000000000000 2.6888359272289208
2 4
Direct
0.0000000000000000 0.0000000000000000 0.0000000000000000
0.5000000000000000 0.5000000000000000 0.5000000000000000
0.3067891334429594 0.3067891334429594 0.0000000000000000
0.6932108665570406 0.6932108665570406 0.0000000000000000
0.1932108665570406 0.8067891334429594 0.5000000000000000
0.8067891334429594 0.1932108665570406 0.5000000000000000
Example of rutile-type silicon oxide crystal structure (VASP 5 style)#
The VASP 5.x style is also supported. Chemical symbols are inserted just before
the line of the numbers of atoms. The chemical symbols in this line overwrite
those defined by the ATOM_NAME
tag and those defined by the first line of
POSCAR
.
Stishovite
1.00000000000000
4.2266540199664249 0.0000000000000000 0.0000000000000000
0.0000000000000000 4.2266540199664249 0.0000000000000000
0.0000000000000000 0.0000000000000000 2.6888359272289208
Si O
2 4
Direct
0.0000000000000000 0.0000000000000000 0.0000000000000000
0.5000000000000000 0.5000000000000000 0.5000000000000000
0.3067891334429594 0.3067891334429594 0.0000000000000000
0.6932108665570406 0.6932108665570406 0.0000000000000000
0.1932108665570406 0.8067891334429594 0.5000000000000000
0.8067891334429594 0.1932108665570406 0.5000000000000000
Force file (FORCE_SETS
)#
Two types of FORCE_SETS
formats are supported.
Type 1#
This format is the default format of phonopy and force constants can be calculated by built-in force constants calculator of phonopy by finite difference method, though external force constants calculator can be also used to obtain force constants with this format by the fitting approach.
This file gives sets of forces in supercells with finite atomic displacements. Each supercell involves one displaced atom. The first line is the number of atoms in supercell. The second line gives number of calculated supercells with displacements. Below the lines, sets of forces with displacements are written. In each set, firstly the atom number in supercell is written. Secondary, the atomic displacement in Cartesian coordinates is written. Below the displacement line, atomic forces in Cartesian coordinates are successively written. This is repeated for the set of displacements. Blank likes are simply ignored.
In the following example, the third line is the displaced atom number that corresponds to the atom number in the supercell created by phonopy. The fourth line gives the displacements in Cartesian coordinates. The lines below, the atomic forces in Cartesian coordinates are written. Once all the forces for a supercell are written, the next set of forces are written. This routine is repeated until the forces of all the displacements have been written.
Example#
48
2
1
0.0050650623043761 0.0000000000000000 0.0086223630086415
-0.0347116200 -0.0000026500 -0.0679795200
0.0050392400 -0.0015711700 -0.0079514600
0.0027380900 -0.0017851900 -0.0069206400
... (continue until all the forces for this displacement have written)
25
0.0050650623043761 0.0000000000000000 0.0086223630086415
-0.0017134500 -0.0001539800 0.0017333400
0.0013248100 0.0001984300 -0.0001203700
-0.0001310200 -0.0007955600 0.0003889300
... (continue until all the forces for this displacement have written)
Type 2#
The format is compatible to DFSET
of
ALM code.
Each line has exactly 6 elements. The first three and second three elements give
displacement and force of an atom in a supercell, respectively. One set with the
number of lines of supercell atoms corresponds to one supercell calculation and
the number of supercell calculations are concatenated as many as the user likes.
This file is parsed to finally get displacements and forces to have the array
shapes of displacements.shape = (num_supercells, num_atoms, 3)
and
forces.shape = (num_supercells, num_atoms, 3)
.
Force constants can be calculated by the fitting approach and this force
constants calculation requires an external force constants calculator such as
symfc (--symfc
) or
ALM (--alm
option). All the data are used for calculating force constants in the fitting
(usually least square fitting) by the force constants calculator.
Example#
0.00834956 0.00506291 0.00215683 -0.01723508 -0.00418148 -0.00376513
-0.00494556 0.00866021 -0.00073630 0.00849148 -0.01091833 -0.00458456
-0.00403290 -0.00837741 0.00368169 0.00476247 0.00907379 -0.00210179
-0.00462319 0.00361350 -0.00809745 0.00996582 -0.00320343 0.01904460
0.00496785 -0.00596540 -0.00630352 -0.01882121 -0.00100787 0.01681980
...
FORCE_CONSTANTS
and force_constants.hdf5
#
If the force constants of a supercell are known, it is not necessary to prepared
FORCES
. Phonopy has an interface to read and write FORCE_CONSTANTS
or
force_constants.hdf5
. To read and write these files are controlled by
force constants tags and FC_FORMAT, READFC_FORMAT, WRITEFC_FORMAT. VASP
users can use VASP DFPT interface to create
FORCE_CONSTANTS
from vasprun.xml
. Quantum ESPRESSO users can use q2r.x
to
create force constants file by followng the instraction shown at Using q2r.x to create phonopy force constants file
Force constants are stored in either array shape of
Compact format:
(n_patom, n_satom, 3, 3)
Full format:
(n_satom, n_satom, 3, 3)
where n_satom
and n_patom
are the numbers of atoms in supercell and
primitive cell, respectively.
Format of FORCE_CONSTANTS
#
First line contains the first two elements of the shape of the force constants
array, i.e., for (n_satom, n_satom, 3, 3)
, the first and second numbers are
the same and are the number of atoms in the supercell, and for
(n_patom, n_satom, 3, 3)
, they are the numbers of atoms in the primitive cell
and supercell. If the first line contains only one number, it is assumed same as
that of the former case.
Below second line, force constants between atoms are written by every four lines. In first line of the four lines, anything can be written, i.e., just ignored. Second to fourth lines of the four lines are for the second rank tensor of force constant in Cartesian coordinates, i.e.:
xx xy xz
yx yy yz
zx zy zz
Example#
32 32
1 1
4.635786969900131 -0.000000000000000 -0.000000000000000
-0.000000000000000 4.635786969900130 -0.000000000000000
-0.000000000000000 -0.000000000000000 4.635786969900130
1 2
-0.246720998398056 -0.000000000000000 -0.000000000000000
-0.000000000000000 0.018256999881458 -0.000000000000000
-0.000000000000000 -0.000000000000000 0.018256999881458
...
1 32
0.002646999982813 0.018011999883049 -0.000000000000000
0.018011999883049 0.002646999982813 -0.000000000000000
-0.000000000000000 -0.000000000000000 0.035303999770773
2 1
-0.246720998398056 0.000000000000000 0.000000000000000
0.000000000000000 0.018256999881458 0.000000000000000
0.000000000000000 0.000000000000000 0.018256999881458
...
32 32
4.635786969900131 0.000000000000000 0.000000000000000
0.000000000000000 4.635786969900130 0.000000000000000
0.000000000000000 0.000000000000000 4.635786969900130
Format of force_constants.hdf5
#
This is an alternative of FORCE_CONSTANTS
but the data is stored in HDF5
format. See the detail of how to obtain this file, FC_FORMAT, READFC_FORMAT, WRITEFC_FORMAT.
The data are stored as follows. p2s_map
is introduced at version 1.12.6. Force
constants data can be stored in the array shape of either
(n_satom, n_satom, 3, 3)
or (n_patom, n_satom, 3, 3)
. In the later case,
p2s_map
is necessary for the consistency check and this gives the indices of
atoms in the primitive cell in supercell index system.
In [1]: import h5py
In [2]: f = h5py.File("force_constants.hdf5", 'r')
In [3]: list(f)
Out[3]: ['force_constants', 'p2s_map']
In [4]: f['force_constants'].shape
Out[4]: (2, 64, 3, 3)
In [5]: f['p2s_map'][:]
Out[5]: array([ 0, 32], dtype=int32)
QPOINTS
(optional)#
Specific q-points are calculated using QPOINTS = .TRUE.
tag and QPOINTS
file. The file format of QPOINTS
is as follows. The first line gives the
number of q-points. Then the successive lines give q-points in reduced
coordinate of reciprocal space of the input unit cell.
Example#
512
-0.437500000000000 -0.437500000000000 -0.437500000000000
-0.312500000000000 -0.437500000000000 -0.437500000000000
-0.187500000000000 -0.437500000000000 -0.437500000000000
...
BORN
(optional)#
This file is used with the --nac
option or NAC
tag.
The formula implemented is refered to Non-analytical term correction.
Format#
In the first line, unit conversion factor is given. In versions 1.10.4 or later, the default value for each calculater can be used if characters than numerical number are given. The default values for the calculaters are found at Default unit conversion factor for non-analytical term correction.
In the second line, dielectric constant \(\epsilon\) is specifed in Cartesian coordinates. The nine values correspond to the tensor elements of xx, xy, xz, yx, yy, yz, zx, zy, and zz.
From the third line, Born effective charges \(Z\) for the independent atoms
in the primitive cell have to be written in Cartesian coordinates. The
independent atoms can be found using the -v
option. As shown below in the
Al2O3 example, the independent atoms are marked by *
in front of atomic
positions:
% phonopy --pa R -v
_ __ | |__ ___ _ __ ___ _ __ _ _
| '_ \| '_ \ / _ \| '_ \ / _ \ | '_ \| | | |
| |_) | | | | (_) | | | | (_) || |_) | |_| |
| .__/|_| |_|\___/|_| |_|\___(_) .__/ \__, |
|_| |_| |___/
2.12.0
Python version 3.9.6
Spglib version 1.16.2
Crystal structure was read from "phonopy_disp.yaml".
Unit of length: angstrom
Settings:
Supercell: [2 2 1]
Primitive matrix:
[0.6666666666666666, -0.3333333333333333, -0.3333333333333333]
[0.3333333333333333, 0.3333333333333333, -0.6666666666666666]
[0.3333333333333333, 0.3333333333333333, 0.3333333333333333]
Spacegroup: R-3c (167)
------------------------------ primitive cell ------------------------------
Lattice vectors:
a 2.387113172649497 1.378200432815288 4.337119797109073
b -2.387113172649497 1.378200432815288 4.337119797109073
c 0.000000000000000 -2.756400865630577 4.337119797109073
Atomic positions (fractional):
*1 Al 0.35209370789580 0.35209370789579 0.35209370789580 26.982
2 Al 0.64790629210421 0.64790629210420 0.64790629210421 26.982
3 Al 0.14790629210421 0.14790629210421 0.14790629210421 26.982
4 Al 0.85209370789579 0.85209370789580 0.85209370789579 26.982
*5 O 0.55580865378801 0.94419134621199 0.25000000000000 15.999
6 O 0.44419134621199 0.05580865378802 0.75000000000000 15.999
7 O 0.25000000000000 0.55580865378801 0.94419134621199 15.999
8 O 0.75000000000000 0.44419134621200 0.05580865378801 15.999
9 O 0.94419134621199 0.25000000000000 0.55580865378801 15.999
10 O 0.05580865378801 0.75000000000001 0.44419134621199 15.999
-------------------------------- unit cell ---------------------------------
Lattice vectors:
a 4.774226345298994 0.000000000000000 -0.000000000000000
b -2.387113172649497 4.134601298445865 0.000000000000000
c -0.000000000000000 0.000000000000000 13.011359391327222
Atomic positions (fractional):
*1 Al 0.33333333333334 0.66666666666666 0.01876037456246 26.982 > 1
2 Al 0.33333333333334 0.66666666666666 0.31457295877087 26.982 > 2
3 Al 0.00000000000000 0.00000000000000 0.14790629210421 26.982 > 3
4 Al 0.66666666666666 0.33333333333334 0.18542704122913 26.982 > 4
5 Al 0.00000000000000 0.00000000000000 0.35209370789579 26.982 > 1
6 Al 0.00000000000000 0.00000000000000 0.64790629210421 26.982 > 2
7 Al 0.66666666666666 0.33333333333334 0.48123962543754 26.982 > 3
8 Al 0.33333333333334 0.66666666666666 0.51876037456246 26.982 > 4
9 Al 0.66666666666666 0.33333333333334 0.68542704122913 26.982 > 1
10 Al 0.66666666666666 0.33333333333334 0.98123962543754 26.982 > 2
11 Al 0.33333333333334 0.66666666666666 0.81457295877087 26.982 > 3
12 Al 0.00000000000000 0.00000000000000 0.85209370789579 26.982 > 4
*13 O 0.30580865378801 0.00000000000000 0.25000000000000 15.999 > 5
14 O 0.36085801287865 0.33333333333334 0.08333333333334 15.999 > 6
15 O 0.00000000000000 0.30580865378801 0.25000000000000 15.999 > 7
16 O 0.66666666666666 0.02752467954532 0.08333333333334 15.999 > 8
17 O 0.69419134621199 0.69419134621199 0.25000000000000 15.999 > 9
18 O 0.97247532045468 0.63914198712135 0.08333333333334 15.999 > 10
19 O 0.97247532045468 0.33333333333334 0.58333333333334 15.999 > 5
20 O 0.02752467954532 0.66666666666666 0.41666666666666 15.999 > 6
21 O 0.66666666666666 0.63914198712135 0.58333333333334 15.999 > 7
22 O 0.33333333333334 0.36085801287865 0.41666666666666 15.999 > 8
23 O 0.36085801287865 0.02752467954532 0.58333333333334 15.999 > 9
24 O 0.63914198712135 0.97247532045468 0.41666666666666 15.999 > 10
25 O 0.63914198712135 0.66666666666666 0.91666666666666 15.999 > 5
26 O 0.69419134621199 0.00000000000000 0.75000000000000 15.999 > 6
27 O 0.33333333333334 0.97247532045468 0.91666666666666 15.999 > 7
28 O -0.00000000000000 0.69419134621199 0.75000000000000 15.999 > 8
29 O 0.02752467954532 0.36085801287865 0.91666666666666 15.999 > 9
30 O 0.30580865378801 0.30580865378801 0.75000000000000 15.999 > 10
-------------------------------- super cell --------------------------------
...
If VASP is used as the calculator for Born effective charge, and the hexagonal
unit cell is used for the calculation, the Born effective charge tensors of
atoms No. 1 and 13 have to be written in BORN
file.
Example#
14.400
3.269 0.000 0.000 0.000 3.269 0.000 0.000 0.000 3.234
2.981 0.000 0.000 0.000 2.981 0.000 0.000 0.000 2.952
-1.935 0.000 0.000 0.000 -2.036 -0.261 0.000 -0.261 -1.968
or using the default NAC unit conversion factor (version 1.10.4 or later),
default value
3.269 0.000 0.000 0.000 3.269 0.000 0.000 0.000 3.234
2.981 0.000 0.000 0.000 2.981 0.000 0.000 0.000 2.952
-1.935 0.000 0.000 0.000 -2.036 -0.261 0.000 -0.261 -1.968