Symmetry condition for group velocity#

Ref. [BIR74]

Group action on modified eigenvectors

\[\begin{split} g f_{\mu}(\kappa; \mathbf{q}\omega_{\mathbf{q}}\nu) &= \sum_{\mu'\nu'} f_{\mu'}(\kappa'; \mathbf{q}\omega_{\mathbf{q}}\nu') \Gamma^{ (\mathbf{q} \omega_{\mathbf{q}}) }(g)_{\kappa'\mu'\nu', \kappa\mu\nu} \quad (g \in \mathcal{G}^{\mathbf{q}}) \\ \omega_{\mathbf{q}}^{2} &= \sum_{ \kappa \mu }\sum_{ \kappa' \mu' } f_{\mu}(\kappa; \mathbf{q}\omega_{\mathbf{q}}\nu)^{\ast} \Phi_{\mu\mu'}(\kappa\kappa'; \mathbf{q}) f_{\mu'}(\kappa'; \mathbf{q}\omega_{\mathbf{q}}\nu)\end{split}\]

Group velocity

\[ \nabla_{q_{\alpha}} \omega_{\mathbf{q}}^{2} = \sum_{ \kappa \mu }\sum_{ \kappa' \mu' } f_{\mu}(\kappa; \mathbf{q}\omega_{\mathbf{q}}\nu)^{\ast} \left( \nabla_{q_{\alpha}} \Phi_{\mu\mu'}(\kappa\kappa'; \mathbf{q}) \right) f_{\mu'}(\kappa'; \mathbf{q}\omega_{\mathbf{q}}\nu)\]

If the group velocity has scalar component, that is

(1)#\[\left\langle \Gamma^{ (\mathbf{q} \omega_{\mathbf{q}}) \ast} \otimes \Gamma^{(\mathbf{\nabla})} \otimes \Gamma^{ (\mathbf{q} \omega_{\mathbf{q}}) } \mid \Gamma^{ (\mathrm{id}) } \right\rangle \geq 1,\]

it should be zero at \(\mathbf{q}\).

The gradient operator \(\mathbf{\nabla}_{\mathbf{q}}\) behaves as covariant vector:

\[\begin{split} \mathbf{q}' &= \mathbf{R}^{\top}\mathbf{q} \quad (\mathbf{R} \in O(3)) \\ \nabla_{q'_{\alpha}} &= \sum_{\beta} \frac{ \partial q_{\beta} }{ \partial q'_{\alpha} } \nabla_{q_{\beta}} = \sum_{\beta} R_{\alpha\beta} \nabla_{q_{\beta}}\end{split}\]

The left hand side of Eq. (1):

\[ \sum_{g \in \mathcal{G}^{\mathbf{q}} / \mathcal{T} } | \chi^{(\mathbf{q} \omega_{\mathbf{q}})}(g) |^{2} \chi^{(\mathbf{\nabla})}(\mathbf{R}_{g})\]

References#

BIR74

Joseph L BIRMAN. A quick trip through group theory and lattice dynamics. Dynamical Properties of Solids: Crystalline solids, fundamentals, 1:83, 1974.