# Isotropy subgroup Consider space group {math}`\mathcal{G}` and its representation ```{math} g \phi_{j} = \sum_{i} \phi_{i} \Gamma(g)_{ij} \quad (g \in \mathcal{G}). ``` A subgroup {math}`\mathcal{H} (\leq \mathcal{G})` is called **isotropy subgroup** belonging {math}`\Gamma` if the subduced representation {math}`\Gamma \downarrow \mathcal{H}` has an identity representation [^isotropy_subgroup] {cite}`Howard:ta0003,PhysRevB.43.11010,doi:10.1142/0751`. When we consider a linear combination of basis functions as {math}`\mathbf{\eta} = \sum_{i} \eta_{i} \phi_{i}`, we call {math}`\mathbf{\eta} = \{ \eta_{i} \}_{i}` as **order parameters**. Two order parameters {math}`\mathbf{\eta}` and {math}`\mathbf{\eta}'` are equivalent if some operation {math}`g \in \mathcal{G}` exists such that ```{math} \mathbf{\eta}' = \mathbf{\Gamma}(g) \mathbf{\eta}. ``` [^isotropy_subgroup]: Consider group {math}`G` acting on space {math}`X`. In general, isotropy subgroup is defined as stabilizer of point {math}`x` in {math}`X` as ```{math} G_{x} = \left\{ g \in G \mid g x = x \right\}. ``` ## Algorithm to generate isotropy subgroups of space group {cite}`Stokes:vk5013` For a small representation {math}`\Gamma^{\mathbf{k}\alpha}` of space group {math}`\mathcal{G}`, its maximal isotropy subgroups {math}`\mathcal{S}` are enumerated as follows. ### Determine sublattice {math}`\mathcal{L}_{\mathcal{S}}` and translational subgroup {math}`\mathcal{T}(\mathcal{S})` The requirements that {math}`\mathcal{S}` is an isotropy subgroup of {math}`\mathcal{G}` is ```{math} \exists \mathbf{\eta} \neq \mathbf{0} \, s.t. \, \mathbf{\Gamma}^{\mathbf{k}\alpha}(g) \mathbf{\eta} = \mathbf{\eta} \quad (\forall g \in \mathcal{S}). ``` In particular, if translation {math}`(\mathbf{E}, \mathbf{t})` belongs to {math}`\mathcal{S}`, {math}`e^{-i\mathbf{k}\cdot\mathbf{t}} = 1`. Thus, a translational subgroup of {math}`\mathcal{S}` should be ```{math} \mathcal{T}(\mathcal{S}) := \{ (\mathbf{E}, \mathbf{t}) \in \mathcal{G} \mid \mathbf{k} \cdot \mathbf{t} \in 2\pi \mathbb{Z} \}. ``` For later use, let {math}`\mathcal{L}_{\mathcal{S}}` be a sublattice {math}`\mathcal{L}_{\mathcal{S}}` formed by translation parts in {math}`\mathcal{T}(\mathcal{S})`. Note that, although subgroups of {math}`\mathcal{T}(\mathcal{S})` also satisfy the requirements, there is no need to consider such subgroups because these subgroups show at lower-symmetry {math}`\mathbf{k}` vector. There are two basis vectors for {math}`\mathcal{T}(\mathcal{S})` that are orthogonal to {math}`\mathbf{k}`. Let {math}`l` be LCM of denominators of {math}`\frac{1}{2\pi}\mathbf{k}`. Then, we write the elements of {math}`\mathbf{k}` as ```{math} \mathbf{k} = 2\pi \left( \frac{g a_{1}}{l} \frac{g a_{2}}{l} \frac{g a_{3}}{l} \right)^{\top}, ``` where {math}`\mathrm{GCD}(a_{1}, a_{2}, a_{3}) = 1`, {math}`\mathrm{GCD}(g, l) = 1` and {math}`1 \leq g < l`. ```{math} &\mathbf{k} \cdot \mathbf{t} \in 2\pi \mathbb{Z} \\ &\Leftrightarrow g (a_{1} \,a_{2} \,a_{3}) \mathbf{t} \equiv 0 \quad (\mathrm{mod}\, l) \\ &\Leftrightarrow (a_{1} \,a_{2} \,a_{3}) \mathbf{t} \equiv 0 \quad (\mathrm{mod}\, l) \quad (\because \mathrm{GCD}(g, l) = 1) \\ ``` By solving {math}`(a_{1} \,a_{2} \,a_{3}) \mathbf{t} = l`, we obtain one special solution {math}`(a_{1} \,a_{2} \,a_{3}) \mathbf{t}_{0} = l` and two general solutions {math}`(a_{1} \,a_{2} \,a_{3}) \mathbf{t}_{i} = 0 \, (i=1,2)`. Then, {math}`\{ n\mathbf{t}_{0}, \mathbf{t}_{1}, \mathbf{t}_{2} \}` spans a lattice ```{math} \{ \mathbf{t} \in \mathbb{Z}^{3} \mid (a_{1} \,a_{2} \,a_{3}) \mathbf{t} = nl \} ``` for {math}`n \in \mathbb{Z}`. Thus, {math}`\{ \mathbf{t}_{0}, \mathbf{t}_{1}, \mathbf{t}_{2} \}` is basis of {math}`\mathcal{L}_{S}`. By stacking these basis vectors, we can find a transformation matrix {math}`\mathbf{M}`, ```{math} \mathcal{T}(\mathcal{S}) = \{ \mathbf{Mt} \mid (\mathbf{E}, \mathbf{t}) \in \mathcal{G} \}. ``` ### Enumerate point group {math}`\mathcal{P}(\mathcal{S})` Next, we find a subgroup of {math}`\mathcal{P}(\mathcal{G})` which preserve the sublattice {math}`\mathcal{L}_{\mathcal{S}}`, ```{math} \mathcal{B}(\mathcal{S}) &:= \{ \mathbf{R} \in \mathcal{P}(\mathcal{G}) \mid \mathbf{R} \mathcal{L}_{\mathcal{S}} =\mathcal{L}_{\mathcal{S}} \} \\ &= \{ \mathbf{R} \in \mathcal{P}(\mathcal{G}) \mid \mathbf{M}^{-1}\mathbf{R}\mathbf{M} \,\mbox{is unimodular} \} \\ ``` Point group of isotropy subgroup {math}`\mathcal{S}` should be a subgroup of {math}`\mathcal{B}(\mathcal{S})`. ### Enumerate isotropy subgroup {math}`\mathcal{S}` For given point group {math}`\mathcal{P}(\mathcal{S})` and translational subgroup {math}`\mathcal{T}(\mathcal{S})`, consider the following set ```{math} \mathcal{S} := \{ ( \mathbf{R}_{i}, \mathbf{\tau}_{i} + \mathbf{c}_{i} + \mathbf{l} ) \mid \mathbf{R}_{i} \in \mathcal{P}(\mathcal{S}), \mathbf{l} \in \mathcal{T}(\mathcal{S}) \}. ``` Here {math}`\mathbf{c}_{i} \in \mathcal{T}(\mathcal{G})` can be freely chosen. The condition that {math}`\mathcal{S}` is a subgroup of {math}`\mathcal{G}` is as follows: ```{math} &\forall ( \mathbf{R}_{i}, \mathbf{\tau}_{i} + \mathbf{Mt} ), ( \mathbf{R}_{j}, \mathbf{\tau}_{j} + \mathbf{Mt}' ) \in \mathcal{S}, ( \mathbf{R}_{i}, \mathbf{\tau}_{i} + \mathbf{Mt} )^{-1} ( \mathbf{R}_{j}, \mathbf{\tau}_{j} + \mathbf{Mt}' ) \in \mathcal{S} \\ &\Leftrightarrow \forall ( \mathbf{R}_{i}, \mathbf{\tau}_{i} + \mathbf{Mt} ), ( \mathbf{R}_{j}, \mathbf{\tau}_{j} + \mathbf{Mt}' ) \in \mathcal{S}, \mathbf{\tau}_{j} + \mathbf{Mt}' - \mathbf{R}_{i}^{-1}(\mathbf{\tau}_{i} + \mathbf{Mt}) \in \mathcal{T}(\mathcal{S}) \\ &\Leftrightarrow \forall \mathbf{R}_{i}, \mathbf{R}_{j} \in \mathcal{S}, \exists k \,s.t.\, \mathbf{R}_{i}^{-1} \mathbf{R}_{j} = \mathbf{R}_{k}, \mathbf{\tau}_{j} - \mathbf{R}_{i}^{-1}\mathbf{\tau}_{i} - \mathbf{\tau}_{k} \in \mathcal{T}(\mathcal{S}) \\ ``` ### Determine order-parameter direction Non-zero order-parameter directions correspond to eigenvectors whose eigenvalues are one of the Reynolds operator, ```{math} \frac{1}{|\mathcal{S}|} \sum_{ g \in \overline{\mathcal{G}} } \Gamma^{\mathbf{k}\alpha}(g). ``` ## References ```{bibliography} :filter: docname in docnames ```