# Symmetry condition for group velocity Ref. {cite}`birman1974quick` Group action on modified eigenvectors ```{math} g f_{\mu}(\kappa; \mathbf{q}\omega_{\mathbf{q}}\nu) &= \sum_{\mu'\nu'} f_{\mu'}(\kappa'; \mathbf{q}\omega_{\mathbf{q}}\nu') \Gamma^{ (\mathbf{q} \omega_{\mathbf{q}}) }(g)_{\kappa'\mu'\nu', \kappa\mu\nu} \quad (g \in \mathcal{G}^{\mathbf{q}}) \\ \omega_{\mathbf{q}}^{2} &= \sum_{ \kappa \mu }\sum_{ \kappa' \mu' } f_{\mu}(\kappa; \mathbf{q}\omega_{\mathbf{q}}\nu)^{\ast} \Phi_{\mu\mu'}(\kappa\kappa'; \mathbf{q}) f_{\mu'}(\kappa'; \mathbf{q}\omega_{\mathbf{q}}\nu) ``` Group velocity ```{math} \nabla_{q_{\alpha}} \omega_{\mathbf{q}}^{2} = \sum_{ \kappa \mu }\sum_{ \kappa' \mu' } f_{\mu}(\kappa; \mathbf{q}\omega_{\mathbf{q}}\nu)^{\ast} \left( \nabla_{q_{\alpha}} \Phi_{\mu\mu'}(\kappa\kappa'; \mathbf{q}) \right) f_{\mu'}(\kappa'; \mathbf{q}\omega_{\mathbf{q}}\nu) ``` If the group velocity has scalar component, that is ```{math} :label: indicator \left\langle \Gamma^{ (\mathbf{q} \omega_{\mathbf{q}}) \ast} \otimes \Gamma^{(\mathbf{\nabla})} \otimes \Gamma^{ (\mathbf{q} \omega_{\mathbf{q}}) } \mid \Gamma^{ (\mathrm{id}) } \right\rangle \geq 1, ``` it should be zero at {math}`\mathbf{q}`. The gradient operator {math}`\mathbf{\nabla}_{\mathbf{q}}` behaves as covariant vector: ```{math} \mathbf{q}' &= \mathbf{R}^{\top}\mathbf{q} \quad (\mathbf{R} \in O(3)) \\ \nabla_{q'_{\alpha}} &= \sum_{\beta} \frac{ \partial q_{\beta} }{ \partial q'_{\alpha} } \nabla_{q_{\beta}} = \sum_{\beta} R_{\alpha\beta} \nabla_{q_{\beta}} ``` The left hand side of Eq. {eq}`indicator`: ```{math} \sum_{g \in \mathcal{G}^{\mathbf{q}} / \mathcal{T} } | \chi^{(\mathbf{q} \omega_{\mathbf{q}})}(g) |^{2} \chi^{(\mathbf{\nabla})}(\mathbf{R}_{g}) ``` ## References ```{bibliography} :filter: docname in docnames ```